Formation and structure of V-Zr amorphous alloy thin films

نویسندگان

  • G. R. Lumpkin
  • M. B. Cortie
چکیده

Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to first and second nearest neighbours in the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates

Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...

متن کامل

Effect of Thickness on Structural and Morphological Properties of AlN Films Prepared Using Single Ion Beam Sputtering

Aluminum nitride (AlN) thin films have potential applications in microelectronic and optoelectronic devices. In this study, AlN thin films with different thicknesses were deposited on silicon substrate by single ion beam sputtering method. The X-ray diffraction (XRD) spectra revealed that the structure of films with thickness of - nm was amorphous, while the polycrystalline hexagonal AlN with a...

متن کامل

Preparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices

In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and  silicon  substrates  using  single  ion  beam  sputtering  technique.  The  physical  and  chemical properties  of  prepared  films  were  investigated  by  different  characterization  technique.  X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...

متن کامل

Microstructures and Mechanical Properties of TiCrZrNbNx Alloy Nitride Thin Films

The pure elements Ti, Zr, Cr, Nb were selected to produce an TiCrZrNb alloy target and deposited thin films thereof by a reactive high vacuum DC sputtering process. Nitrogen was used as the reactive gas to deposit the nitride thin films. The effect of nitriding on the properties of the TiCrZrNbNx film was tested by changing the nitrogen ratio of the atmosphere. All of the as-deposited TiCrZrNbN...

متن کامل

Influence of amorphization on electrode performances of AB type 2 hydrogen storage alloys

It is generally accepted that the electrochemical discharge capacity of a hydrogen storage alloy is closely related to its crystal characteristics. From our experiment, the discharge capacity of AB type Laves phase hydrogen storage alloy ZrCr Mn V Ni 2 0.4 0.2 0.1 1.3 21 21 decreased sharply from 324 mAh g to 25 mAh g after amorphization by mechanically milling the crystalline (as-cast) alloy w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014